MOLECULAR CHARACTERIZATION OF *Rhizoctonia solani* ISOLATED FROM PEPPER PLANTS IN IRAQ BY USING PCR.

Kareem T.A.*

M. S. Hassan

*Department of Plant protection- College of Agriculture- University of Baghdad- Republic of Iraq. tariqask@yahoo.com

ABSTRACT

Rhizoctonia solani is one of the most important vegetables plants pathogens which are distributed in soil worldwide. Three isolates are selected from eight *R. solani* isolates pathogenic for Pepper plants from different area in Baghdad – Iraq, according to the pathogenicity test on Radish seeds. The sequences of rDNA- ITS region of the Iraqi pepper isolates (IQ- 34, IQ-39 & IQ- 40) were showed variation in similarity. Phylogenetic tree based on rDNA-ITS regions indicated that the IQ-34 and IQ- 40 isolates from pepper belonged to AG5 and IQ- 39 isolate belonged to AG4-HGIII. The nucleotide sequence data were sent to International GenBank to check and registered. The GenBank send accession number for each sequence at Jul.2013 as: KF372660, KF372661 and KF372662 respectively.

Key words: *Rhizoctonia solani*, Pepper, pathogenicity, molecular characteristics, DNA sequencing, phylogenetic.

INTRODACTION

Genus Rhizoctonia is a highly heterogeneous group of filamentous fungi that share similarities in their anamorphic, sterile state. They do not produce asexual spores and sexual state occurs only rarely. The group contains several economically important and global plant pathogens like *Rhizoctonia solani* Kühn [telemorph *Thanatephorus cucumeris* (Frank) Donk] (Gonzáles García *et al.*, 2006).

R. solani is the most widely known and most studied species of genus Rhizoctonia. It was originally described by Julius Kühn from potato in 1858. *R. solani* is soilborne Basidiomycete occurring world-wide, with complex biology. Its highly destructive lifestyle as a non-obligate parasite causes necrosis and damping-off on numerous host plant species. Because of the lack of conidia and the scarcity of the sexual spores, *R. solani* exists as vegetative hyphae and sclerotia in nature. The fungus is dispersed mainly via sclerotia, contaminated plant material or soil spread by wind, water or during agricultural practices such

Received for publication Sept. 10, 2013.

Accepted for publication Nov. 12, 2013.

as tillage and seed transportation. The fungus can stay in the soil as a saprophyte for long periods (Ogoshi, 1087; Ogoshi *et al.*, 1990).

Disease symptoms include leaf blights, leaf spots, damping-off, rots on roots, shoots and fruits, canker lesions on sprouts and stolon, and sclerotial diseases. However, some *R. solani* strains form symbiotic mycorrhizal relationships with orchid plants (Carling *et al.*, 1999; Chang and Chou, 2007).

The host range of *R. solani* is wide and it causes various diseases on important crop plants of the world, including plant species in the *Solanaceae*, *Fabaceae*, *Asteraceae*, *Poaceae* and *Braccicaceae* as well as ornamental plants and forest trees (Ogoshi, 1996).

Hyphal fusion has been proved to be a reliable method for grouping R. *solani* strains into anastomosis groups (AGs) (Ogoshi, 1987). The concept has given rise to currently 14 AGs (Carling *et al.*, 2002).

AGs 1, 2, 3 and 4 are the biggest pathogen groups, characterized individually in three different geographical locations, in Europe (Carling, 1996), in the North America (Parmeter et al., 1969), and in Asia (Watanabe and Matsuda, 1966).

The most informative DNA-based molecular technique for investigating diversity in Rhizoctonia isolates has been sequence analysis of ribosomal ribonucleic acid (rRNA) genes (28S) and the internal transcribed spacer (ITS) region (Gonzalez *et al.*, 2001). Analyses of these genes have not only shown the genetic relatedness of Rhizoctonia isolates, but have also confirmed some of the anastomosis groupings.

In this study, detailed description of morphology characteristics, pathogenicity, and molecular characteristics of *R. solani* isolates from pepper plants root with a typical crown, which originate from different Baghdad regions-Iraq.

MATERIALS AND METHODS

Isolates

Isolates used in this study were collected during vegetative period in 2011 from five regions (Abu Ghraib, Yusifiyah, Al Rashidiya, Tarmiya and Doura) in Baghdad, Iraq. Diseased pepper plants (*Capsicum annuum* L.) showing symptoms of infection by *R.solani* was surface sterilized in 0.5% hypochlorite for 1 min and then plated on water agar (WA) with 250μ g/ml chloramphenicol. After incubation at 25 ± 1 °C for 2-3 days, culture resembling *R.solani* were transferred to fresh plates to ensure purity. Isolations were transferred to slant PDA and kept on 4°C until further investigation.

Morphological characteristics

Tested isolates were examined for macroscopic characteristics typical of R. *solani*, such as development and change of mycelial color, sclerotia formation, mycelial appearance, branching of hyphae and existence of

Diyala Agricultural Sciences Journal, 5(2) 45 - 54, 2013

multinucleate cells were also determined (Parmeter and Whitney, 1970; Herr, 1979).

Pathogenicity tests

Pathogenicity of tested *R. solani* isolates was evaluated by colonized agar disks (7-10 mm) taken from the margins of 3 day-old cultures growing on PDA were transferred to the center of water agar (WA) plates and incubated for 3 days.

Six pre-germinated seeds of radish (*Raphanus sativus*) were placed on the margins of the Rhizoctonia colonies in separate plates. The pathogenicity of the isolates was evaluated after a further 6 days for radish at 25 ± 1 °C.

Disease severity was assessed visually and scored using a disease severity index (DSI) ranging from 0-5, where 0-1=<1 mm lesion; 2=1-3 mm; 3=3-5 mm; 4=5-7 mm; 5=>7 mm or dead plant. Isolates causing no symptoms or very mild symptoms (0-0.3 DSI) were considered avirulent ; isolates causing mild symptoms (0.4-1.9 DSI) were considered low virulent; isolates causing moderate symptoms (2-2.9 DSI) were considered moderately virulent; isolates causing severe symptoms (3-3.9 DSI) were considered virulent and isolates causing very severe symptoms (4-5 DSI) were considered strongly virulent (Sneh et al., 2004).

Molecular characteristics

Each isolate from *R.solani* was grown in potato dextrose broth for 4-7days at 25 ± 1 °C. Mycelial mats were harvested by filtration, dry in room chamber and ground to fine powder in liquid N and then stored in – 20 °C prior to DNA isolation.

Genomic DNA was extracted from 100 mg ground fungal tissue using the fungal DNA Kit (EZ-10 spin column fungal genomic DNA, Bioneer corporation , Korea) and following the protocol recommended by the manufacturer. Internal transcribed spacer region of ribosomal DNA was amplified using ITS1 F (TCC GTA GGT GAA CCT GCG G) and ITS4 R (TCC TCC GCT TAT TGA TAT GC) set of primers that were described by Hsiang and Dean (2001). The 20 μ L reaction mixture for PCR amplification consisting of 5 μ L of PCR PreMix (Bioneer Corporation, Korea), 5 μ L of DNA template, 3 μ L of ITS1, 3 μ L of ITS4 and 4 μ L of PCR distilled water. The amplification was performed in PCR thermal cycler (My Genie 32 Thermal Block, Bioneer, Korea). The cycle parameters were: An initial denaturation (95°C, 2 min), 35 cycles of denaturation (94°C, 30s), annealing (55°C, 1 min) and extension (72°C, 1 min). Final extension was at 72°C for 10 min (Hsiang and Dean, 2001).

DNA sequencing and data analysis

After the amplification of the ITS region of the rDNA, each product was purified using the AccuPrep® PCR Purification Kit and protocol (Bioneer Corporation, Korea). Purified rDNA was sending to sequenced in DNA Sequencing Facility at Bioneer Corporation, Korea. Analysis of ITS sequences was performed using on-line software CLUSTALW. Sequence data base of National Centre for Biotechnology Information-NCBI) – GenBank, which was entered via web page www.ncbi.nlm.nih.gov, was used for information on R. *solani* isolates.

Phylogenetic analysis, all sequences obtained in this study and some available at GenBank were aligned with multiple aliment program ClustalW.

A tree showing the phylogenetic relatedness between isolates constructed from Maximum Composite Likelihood by the neighbor – joining method, using the computer software package MEGA5.2. the tree was rooted with an isolate of AG 6HGI (accession number : DQ301740) as out-group.

RESULTS AND DISCUSSION

Morphological characteristics

A total of 8 *Rhizoctonia spp.* isolates were obtained from 28 samples, from Pepper plants roots with typical symptoms of Rhizoctonia root rot was isolated (Table 1).

All isolates (IQ-18, IQ-24, IQ-25, IQ-26, IQ-28, IQ-34, IQ-39 & IQ-40) showed typical features of *R. solani* complex including brown pigmentation of hyphae, branching near distal septum, constriction of hyphae and formation of septum short distance from the place of branching, the presence of dolipore septa and multinuclear cells in young vegetative hyphae (Parmeter and Whitney, 1970).

<i>Rhizoctonia</i> spp. Isolate code	Regions Baghdad-Iraq	Disease severity index	
IQ- 18	Yusifiyah	2.6	
IQ- 24	Yusifiyah	2.5	
IQ- 25	Yusifiyah	2.3	
IQ- 26	Yusifiyah	2.9	
IQ- 28	Yusifiyah	2	
IQ- 34	Yusifiyah	5	
IQ- 39	Yusifiyah	5	
IQ- 40	Yusifiyah	5	

Table 1. Pathogenicity testing examined on Radish seeds to determine disease severity index of R. solani isolates used in this study.

Pathogenicity tests

At the end of all pathogenicity experiments, re-isolations were done from all examined plant species with typical symptoms. *R. solani* was successfully reisolated to confirm Koch's postulates. The results of the research showed three examined isolates proved to be strong virulent on radish seeds (IQ-34, IQ- 39 & IQ- 40). This isolates were selected for depth research in this study (table 1).

Also, isolates with the lowest pathogenicity (IQ- 18, IQ- 24, IQ- 25, IQ- 26 & IQ- 28) on radish seeds test were taken for further research.

Diyala Agricultural Sciences Journal, **5**(**2**) 45 – 54 ,2013

Molecular characteristics of isolates

The selected isolates sequences were compared between themselves and with 30 isolates (ClustalW), randomly chosen representative of *R. solani* AGs-1 to 12 and AG BI, whose sequences were downloaded from GenBank (Table 2). Similarity of these test sequences showed that homology ranged from 57 to 90%. ITS sequences of isolates IQ- 34, IQ- 39 & IQ-40 had the highest sequence similarity with Indiana isolate JF701784 that belong to AG 5 (81%), Australian isolate AF153795 that belong to AG8ZGI-1 (66%) and Indiana isolate JF701784 that belong to AG 5 (90%) respectively.

All sequencing results for *R.solani* isolates (IQ- 34, IQ- 39 & IQ- 40) were sent to International GenBank to check and registered. The GenBank send accession number for each sequence at Jul.2013 as: KF372660, KF372661 & KF372662 respectively (available now on www.ncbi.nlm.nih.gov).

This is the first detailed report representing the characteristic of *R. solani* on Pepper plants in Baghdad - Iraq with regard to its morphological, pathogenicity and phylogenetic analysis. Diseases caused by *R. solani* is worldwide of host plant species include Pepper plants (Sneh *et al.*, 1991).

Integrated research of morphological, pathogenic and molecular characteristics serves for the determination of groups and subgroups in *R. solani*. The importance of correct determination of anastomosis groups within *R. solani* complex is very important because of different virulence levels present at different anastomosis groups (Carling *et al.*, 2002).

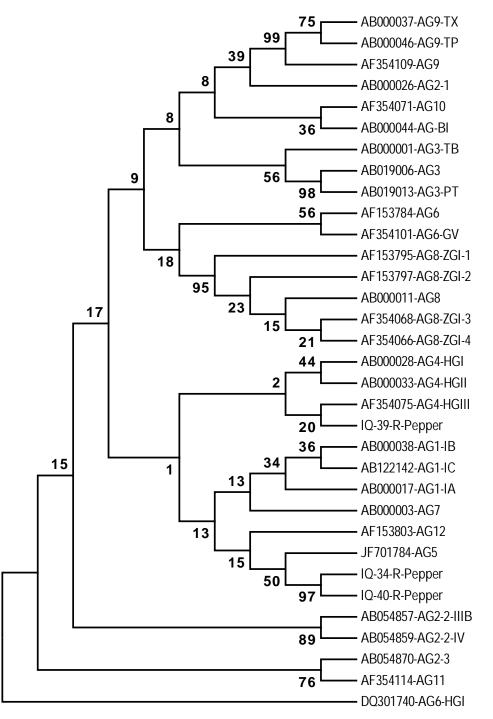

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pepper isolates IQ-34, IQ-39 & IQ-40 using Clustal W.						
AG 1-IA Oryza sativa, Japan AB000017 TO G2 T1 AG 1-IB Beta vulgaris, Japan AB000038 G2 G3 T2 AG 1-IC Beta vulgaris, Japan AB122142 T2 G2 80 AG 2-1 Solanum tuberosum, USA AB000026 G5 G0 T7 AG 2-21IIB Beta vulgaris, USA AB054857 G2 G1 T0 AG 2-2 IV Beta vulgaris, USA AB054870 G2 G4 75 AG 3 Beta vulgaris, USA AB019006 G4 G1 70 AG 3 Beta vulgaris, USA AB019006 G4 G1 73 AG 3TB Nicotiana tabacum, USA AB019001 G7 G4 81 AG 4HGI Beta vulgaris, Japan AB000028 G4 G1 71 AG 4HGII Beta vulgaris, USA AF354075 G5 G0 77 AG 5 Pea spp., India JF701784 81 G3 90 AG 6 Pt	AG &	Host and geographic		Sequence si	Sequence similarity (%) (Pepper)		
AG 1-IBBeta vulgaris, JapanAB000038 62 63 72 AG 1-ICBeta vulgaris, JapanAB122142 72 62 80 AG 2-1Solanum tuberosum, USAAB000026 65 60 77 AG 2-2IIIBBeta vulgaris, USAAB054857 62 61 70 AG 2-2IVBeta vulgaris, USAAB054859 64 61 70 AG 2-3Glycine max, JapanAB054870 62 64 75 AG 3Beta vulgaris, USAAB019006 64 61 73 AG 3PTSolanum tuberosum, USAAB019013 63 61 73 AG 3TBNicotiana tabacum, USAAB00001 67 64 81 AG 4HGIBeta vulgaris, JapanAB000033 63 60 70 AG 4HGIIBeta vulgaris, JapanAB000033 63 60 70 AG 5Pea spp., IndiaJF701784 81 63 90 AG 6Pterostylis acuminata, AustraliaAF153784 71 65 82 AG 6GVSoil, JapanAB000003 70 61 78 AG 8Triticum aestivum, AustraliaAF153795 70 66 82 AG8ZGI-1Soil, AustraliaAF153797 72 64 80 AG82GI-2Soil, AustraliaAF354109 64 60 74 AG 9Solanum tuberosum, USAAB000037 64 60 74 AG 9TXSolanum tuberosum, USAAB000037 64	Subgroup	Subgroup origin		IQ-34	IQ-39	IQ-40	
AG 1-ICBeta vulgaris, JapanAB 122142726280AG 2-1Solanum tuberosum, USAAB00026656077AG 2-2IIIBBeta vulgaris, USAAB054857626170AG 2-2 IVBeta vulgaris, USAAB054859646170AG 2-3Glycine max, JapanAB054870626475AG 3Beta vulgaris, USAAB019006646173AG 3PTSolanum tuberosum, USAAB019013636173AG 3TBNicotiana tabacum, USAAB000001676481AG 4HGIBeta vulgaris, JapanAB000028646171AG 4HGIIBeta vulgaris, JapanAB000033636070AG4HGIIBeta vulgaris, USAAF354075656077AG 5Pea spp., IndiaJF701784816390AG 6Pterostylis acuminata, AustraliaAF153784716582AG 6GVSoil, JapanAB00003706178AG 8Triticum aestivum, AustraliaAF153795706682AG8ZGI-1Soil, AustraliaAF153797726480AG82CI-2Soil, AustraliaAF354068676379AG82CI-3Hordeum vulgare, AustraliaAF354068676379AG82CI-4Hordeum vulgare, AustraliaAF354009646074AG 9Solanum tuberosum, USAAF354071	AG 1-IA	G 1-IA Oryza sativa, Japan		70	62	71	
AG 2-1 Solanum tuberosum, USA AB000026 65 60 77 AG 2-2IIIB Beta vulgaris, USA AB054857 62 61 70 AG 2-2 IV Beta vulgaris, USA AB054859 64 61 70 AG 2-3 Glycine max, Japan AB054870 62 64 75 AG 3 Beta vulgaris, USA AB019006 64 61 73 AG 3PT Solanum tuberosum, USA AB019013 63 61 73 AG 3TB Nicotiana tabacum, USA AB00001 67 64 81 AG 4HGI Beta vulgaris, Japan AB000028 64 61 71 AG 4HGII Beta vulgaris, USA AF354075 65 60 77 AG 5 Pea spp., India JF701784 81 63 90 AG 6 Pterostylis acuminata, Australia AF153784 71 65 82 AG 6GV Soil, Japan AB00003 70 61 78 AG 8 T	AG 1-IB	Beta vulgaris, Japan	AB000038	62	63	72	
AG 2-2IIIB Beta vulgaris, USA AB054857 62 61 70 AG 2-2 IV Beta vulgaris, USA AB054859 64 61 70 AG 2-3 Glycine max, Japan AB054870 62 64 75 AG 3 Beta vulgaris, USA AB019006 64 61 73 AG 3PT Solanum tuberosum, USA AB019013 63 61 73 AG 3TB Nicotiana tabacum, USA AB000001 67 64 81 AG 4HGI Beta vulgaris, Japan AB000028 64 61 71 AG 4HGII Beta vulgaris, USA AF354075 65 60 77 AG 5 Pea spp., India JF701784 81 63 90 AG 6 Prerostylis acuminata, Australia AF153784 71 65 82 AG 6GV Soil, Japan AB00001 74 64 80 AG 7 Soil, Japan AB00001 71 63 78 AG 8 Triticum aesti	AG 1-IC	Beta vulgaris, Japan	AB122142	72	62	80	
AG 2-2 IV Beta vulgaris, USA AB054859 64 61 70 AG 2-3 Glycine max, Japan AB054870 62 64 75 AG 3 Beta vulgaris, USA AB019006 64 61 73 AG 3PT Solanum tuberosum, USA AB019013 63 61 73 AG 3TB Nicotiana tabacum, USA AB000001 67 64 81 AG 4HGI Beta vulgaris, Japan AB000028 64 61 71 AG 4HGII Beta vulgaris, Japan AB000033 63 60 70 AG 4HGII Beta vulgaris, USA AF354075 65 60 77 AG 5 Pea spp., India JF701784 81 63 90 AG 6 Pterostylis acuminata, Australia AF153784 71 65 82 AG 6GV Soil, Japan AB00003 70 61 78 AG 8 Triticum aestivum, Australia AB000011 71 63 78 AG82GI-1	AG 2-1	Solanum tuberosum, USA	AB000026	65	60	77	
AG 2-3 Glycine max, Japan AB054870 62 64 75 AG 3 Beta vulgaris, USA AB019006 64 61 73 AG 3PT Solanum tuberosum, USA AB019013 63 61 73 AG 3TB Nicotiana tabacum, USA AB000001 67 64 81 AG 4HGI Beta vulgaris, Japan AB000028 64 61 71 AG 4HGII Beta vulgaris, Japan AB000033 63 60 70 AG4HGIII Beta vulgaris, USA AF354075 65 60 77 AG 5 Pea spp., India JF701784 81 63 90 AG 6 Pterostylis acuminata, Australia AF153784 71 65 82 AG 6GV Soil, Japan AB000003 70 61 78 AG 8 Triticum aestivum, Australia AF153795 70 66 82 AG8ZGI-1 Soil, Australia AF153797 72 64 80 AG8ZGI-2 Soil, Australia AF354068 67 63 79 AG8ZG	AG 2-2IIIB	Beta vulgaris, USA	AB054857	62	61	70	
AG 3Beta vulgaris, USAAB019006 64 61 73 AG 3PTSolanum tuberosum, USAAB019013 63 61 73 AG 3TBNicotiana tabacum, USAAB000001 67 64 81 AG 4HGIBeta vulgaris, JapanAB000028 64 61 71 AG 4HGIIBeta vulgaris, JapanAB000033 63 60 70 AG4HGIIIBeta vulgaris, USAAF354075 65 60 77 AG 5Pea spp., IndiaJF701784 81 63 90 AG 6Pterostylis acuminata, AustraliaAF153784 71 65 82 AG 6GVSoil, JapanAB000003 70 61 78 AG 8Triticum aestivum, AustraliaAF153795 70 66 82 AG8ZGI-1Soil, AustraliaAF153797 72 64 80 AG8ZGI-2Soil, AustraliaAF354068 67 63 79 AG8ZGI-4Hordeum vulgare, ScotlandAF354068 67 63 79 AG8ZGI-4Hordeum vulgare, ScotlandAF354066 69 60 74 AG 9TXSolanum tuberosum, USAAB000037 64 60 78 AG 10Hordeum vulgare, AustraliaAF354071 62 57 73 AG 11Glycine max, USAAF354114 69 63 76 AG 12Pterostylis acuminata, AustraliaAF153803 72 60 79	AG 2-2 IV	Beta vulgaris, USA	AB054859	64	61	70	
AG 3PT Solanum tuberosum, USA AB019013 63 61 73 AG 3TB Nicotiana tabacum, USA AB000001 67 64 81 AG 4HGI Beta vulgaris, Japan AB000028 64 61 71 AG 4HGII Beta vulgaris, Japan AB000033 63 60 70 AG 4HGII Beta vulgaris, USA AF354075 65 60 77 AG 5 Pea spp., India JF701784 81 63 90 AG 6 Pterostylis acuminata, Australia AF153784 71 65 82 AG 6GV Soil, Japan AB00003 70 61 78 AG 8 Triticum aestivum, Australia AB000011 71 63 78 AG8ZGI-1 Soil, Australia AF153795 70 66 82 AG8ZGI-2 Soil, Australia AF153797 72 64 80 AG8ZGI-3 Hordeum vulgare, Australia AF354066 69 60 76 AG 9	AG 2-3	<i>Glycine max</i> , Japan	AB054870	62	64		
AG 3TBNicotiana tabacum, USAAB000001 67 64 81 AG 4HGIBeta vulgaris, JapanAB000028 64 61 71 AG 4HGIIBeta vulgaris, JapanAB000033 63 60 70 AG 4HGIIBeta vulgaris, USAAF354075 65 60 77 AG 5Pea spp., IndiaJF701784 81 63 90 AG 6Pterostylis acuminata, AustraliaAF153784 71 65 82 AG 6GVSoil, JapanAF354101 74 64 80 AG 7Soil, JapanAB00003 70 61 78 AG 8Triticum aestivum, AustraliaAB000011 71 63 78 AG8ZGI-1Soil, AustraliaAF153795 70 66 82 AG8ZGI-2Soil, AustraliaAF354068 67 63 79 AG8ZGI-3Hordeum vulgare, AustraliaAF354068 67 63 79 AG8ZGI-4Hordeum vulgare, ScotlandAF354066 69 60 74 AG 9Solanum tuberosum, USAAB000037 64 60 78 AG 9TPSolanum tuberosum, USAAB000037 64 61 78 AG 10Hordeum vulgare, AustraliaAF354071 62 57 73 AG 11Glycine max, USAAF354114 69 63 76 AG 12Pterostylis acuminata, AustraliaAF153803 72 60 79	AG 3	Beta vulgaris, USA	AB019006	64	61	73	
AG 4HGI Beta vulgaris, Japan AB000028 64 61 71 AG 4HGII Beta vulgaris, Japan AB000033 63 60 70 AG 4HGII Beta vulgaris, USA AF354075 65 60 77 AG 5 Pea spp., India JF701784 81 63 90 AG 6 Pterostylis acuminata, Australia AF153784 71 65 82 AG 6GV Soil, Japan AF354101 74 64 80 AG 7 Soil, Japan AB000003 70 61 78 AG 8 Triticum aestivum, Australia AB000011 71 63 78 AG8ZGI-1 Soil, Australia AF153795 70 66 82 AG8ZGI-2 Soil, Australia AF354068 67 63 79 AG8ZGI-3 Hordeum vulgare, Australia AF354068 67 63 79 AG8ZGI-4 Hordeum vulgare, Scotland AF354066 69 60 76 AG 9	AG 3PT	Solanum tuberosum, USA	AB019013	63	61	73	
AG 4HGIIBeta vulgaris, JapanAB000033636070AG4HGIIIBeta vulgaris, USAAF354075656077AG 5Pea spp., IndiaJF701784816390AG 6Pterostylis acuminata, AustraliaAF153784716582AG 6GVSoil, JapanAF354101746480AG 7Soil, JapanAB000003706178AG 8Triticum aestivum, AustraliaAB000011716378AG8ZGI-1Soil, AustraliaAF153795706682AG8ZGI-2Soil, AustraliaAF153797726480AG8ZGI-3Hordeum vulgare, AustraliaAF354068676379AG8ZGI-4Hordeum vulgare, ScotlandAF354109646074AG 9Solanum tuberosum, USAAB000037646078AG 9TXSolanum tuberosum, USAAB000037646078AG 10Hordeum vulgare, AustraliaAF354071625773AG 11Glycine max, USAAF354114696376AG 12Pterostylis acuminata, AustraliaAF153803726079	AG 3TB	Nicotiana tabacum, USA	AB000001	67	64	81	
AG4HGIIIBeta vulgaris, USAAF354075656077AG 5Pea spp., IndiaJF701784816390AG 6Pterostylis acuminata, AustraliaAF153784716582AG 6GVSoil, JapanAF354101746480AG 7Soil, JapanAB000003706178AG 8Triticum aestivum, AustraliaAB000011716378AG8ZGI-1Soil, AustraliaAF153795706682AG8ZGI-2Soil, AustraliaAF153797726480AG8ZGI-3Hordeum vulgare, AustraliaAF354068676379AG8ZGI-4Hordeum vulgare, ScotlandAF354109646074AG 9TXSolanum tuberosum, USAAB000037646078AG 10Hordeum vulgare, AustraliaAF354071625773AG 11Glycine max, USAAF354114696376AG 12Pterostylis acuminata, AustraliaAF153803726079	AG 4HGI	Beta vulgaris, Japan	AB000028	64	61	71	
AG 5 Pea spp., India JF701784 81 63 90 AG 6 Pterostylis acuminata, Australia AF153784 71 65 82 AG 6GV Soil, Japan AF354101 74 64 80 AG 7 Soil, Japan AB000003 70 61 78 AG 8 Triticum aestivum, Australia AB000011 71 63 78 AG8ZGI-1 Soil, Australia AF153795 70 66 82 AG8ZGI-2 Soil, Australia AF153797 72 64 80 AG8ZGI-3 Hordeum vulgare, Australia AF354068 67 63 79 AG8ZGI-3 Hordeum vulgare, Scotland AF354066 69 60 76 AG 9 Solanum tuberosum, USA AF354109 64 60 74 AG 9TX Solanum tuberosum, USA AB000037 64 60 78 AG 9TP Solanum tuberosum, USA AB000046 64 61 78 AG 10	AG 4HGII	Beta vulgaris, Japan	AB000033	63	60	70	
AG 6 Pterostylis acuminata, Australia AF153784 71 65 82 AG 6GV Soil, Japan AF354101 74 64 80 AG 7 Soil, Japan AB000003 70 61 78 AG 8 Triticum aestivum, Australia AB000011 71 63 78 AG82GI-1 Soil, Australia AF153795 70 66 82 AG8ZGI-2 Soil, Australia AF153797 72 64 80 AG8ZGI-3 Hordeum vulgare, Australia AF354068 67 63 79 AG8ZGI-4 Hordeum vulgare, Scotland AF354068 67 63 79 AG8ZGI-4 Hordeum vulgare, Scotland AF354066 69 60 76 AG 9 Solanum tuberosum, USA AB000037 64 60 78 AG 9TP Solanum tuberosum, USA AB000046 64 61 78 AG 10 Hordeum vulgare, Australia AF354071 62 57 73	AG4HGIII	Beta vulgaris, USA	AF354075	65	60	77	
AG 6GVSoil, JapanAF354101746680AG 7Soil, JapanAB000003706178AG 8Triticum aestivum, AustraliaAB000011716378AG8ZGI-1Soil, AustraliaAF153795706682AG8ZGI-2Soil, AustraliaAF153797726480AG8ZGI-3Hordeum vulgare, AustraliaAF354068676379AG8ZGI-4Hordeum vulgare, ScotlandAF354066696076AG 9Solanum tuberosum, USAAF354109646074AG 9TPSolanum tuberosum, USAAB000037646078AG 10Hordeum vulgare, AustraliaAF354071625773AG 11Glycine max, USAAF354114696376AG 12Pterostylis acuminata, AustraliaAF153803726079	AG 5	Pea spp., India	JF701784	81	63	90	
AG 7 Soil, Japan AB000003 70 61 78 AG 8 Triticum aestivum, Australia AB000011 71 63 78 AG 82 Triticum aestivum, Australia AB000011 71 63 78 AG82GI-1 Soil, Australia AF153795 70 66 82 AG8ZGI-2 Soil, Australia AF153797 72 64 80 AG8ZGI-3 Hordeum vulgare, Australia AF354068 67 63 79 AG8ZGI-4 Hordeum vulgare, Scotland AF354066 69 60 76 AG 9 Solanum tuberosum, USA AF354109 64 60 74 AG 9TX Solanum tuberosum, USA AB000037 64 60 78 AG 9TP Solanum tuberosum, USA AB000046 64 61 78 AG 10 Hordeum vulgare, Australia AF354071 62 57 73 AG 11 Glycine max, USA AF354114 69 63 76 AG 1	AG 6	Pterostylis acuminata, Australia	AF153784	71	65	82	
AG 8 Triticum aestivum, Australia AB000011 71 63 78 AG8ZGI-1 Soil, Australia AF153795 70 66 82 AG8ZGI-2 Soil, Australia AF153797 72 64 80 AG8ZGI-3 Hordeum vulgare, Australia AF354068 67 63 79 AG8ZGI-4 Hordeum vulgare, Scotland AF354066 69 60 76 AG 9 Solanum tuberosum, USA AF354109 64 60 74 AG 9TX Solanum tuberosum, USA AB000037 64 61 78 AG 10 Hordeum vulgare, Australia AF354071 62 57 73 AG 11 Glycine max, USA AF354114 69 63 76 AG 12 Pterostylis acuminata, Australia AF354071 62 57 73	AG 6GV	Soil, Japan	AF354101	74	64	80	
AG8ZGI-1Soil, AustraliaAF153795706682AG8ZGI-2Soil, AustraliaAF153797726480AG8ZGI-3Hordeum vulgare, AustraliaAF354068676379AG8ZGI-4Hordeum vulgare, ScotlandAF354066696076AG 9Solanum tuberosum, USAAF354109646074AG 9TXSolanum tuberosum, USAAB000037646078AG 9TPSolanum tuberosum, USAAB000046646178AG 10Hordeum vulgare, AustraliaAF354071625773AG 11Glycine max, USAAF354114696376AG 12Pterostylis acuminata, AustraliaAF153803726079	AG 7	Soil, Japan	AB000003	70	61	78	
AG8ZGI-2 Soil, Australia AF153797 72 64 80 AG8ZGI-3 Hordeum vulgare, Australia AF354068 67 63 79 AG8ZGI-4 Hordeum vulgare, Scotland AF354066 69 60 76 AG9 Solanum tuberosum, USA AF354109 64 60 74 AG 9TX Solanum tuberosum, USA AB000037 64 60 78 AG 9TP Solanum tuberosum, USA AB000046 64 61 78 AG 9TP Solanum tuberosum, USA AB000046 64 61 78 AG 10 Hordeum vulgare, Australia AF354071 62 57 73 AG 11 Glycine max, USA AF354114 69 63 76 AG 12 Pterostylis acuminata, Australia AF153803 72 60 79	AG 8	Triticum aestivum, Australia	AB000011	71	63	78	
AG8ZGI-3 Hordeum vulgare, Australia AF354068 67 63 79 AG8ZGI-4 Hordeum vulgare, Scotland AF354066 69 60 76 AG 9 Solanum tuberosum, USA AF354109 64 60 74 AG 9TX Solanum tuberosum, USA AB000037 64 60 78 AG 9TP Solanum tuberosum, USA AB000046 64 61 78 AG 9TP Solanum tuberosum, USA AB000046 64 61 78 AG 10 Hordeum vulgare, Australia AF354071 62 57 73 AG 11 Glycine max, USA AF354114 69 63 76 AG 12 Pterostylis acuminata, Australia AF153803 72 60 79	AG8ZGI-1	Soil, Australia	AF153795	70	66	82	
AG8ZGI-4 Hordeum vulgare, Scotland AF354066 69 60 76 AG 9 Solanum tuberosum, USA AF354109 64 60 74 AG 9TX Solanum tuberosum, USA AB000037 64 60 78 AG 9TP Solanum tuberosum, USA AB000046 64 61 78 AG 9TP Solanum tuberosum, USA AB000046 64 61 78 AG 10 Hordeum vulgare, Australia AF354071 62 57 73 AG 11 Glycine max, USA AF354114 69 63 76 AG 12 Pterostylis acuminata, Australia AF153803 72 60 79	AG8ZGI-2	Soil, Australia	AF153797	72	64	80	
AG 9 Solanum tuberosum, USA AF354109 64 60 74 AG 9TX Solanum tuberosum, USA AB000037 64 60 78 AG 9TP Solanum tuberosum, USA AB000046 64 61 78 AG 9TP Solanum tuberosum, USA AB000046 64 61 78 AG 10 Hordeum vulgare, Australia AF354071 62 57 73 AG 11 Glycine max, USA AF354114 69 63 76 AG 12 Pterostylis acuminata, Australia AF153803 72 60 79	AG8ZGI-3	Hordeum vulgare, Australia	AF354068	67	63	79	
AG 9TX Solanum tuberosum, USA AB000037 64 60 78 AG 9TP Solanum tuberosum, USA AB000046 64 61 78 AG 9TP Solanum tuberosum, USA AB000046 64 61 78 AG 10 Hordeum vulgare, Australia AF354071 62 57 73 AG 11 Glycine max, USA AF354114 69 63 76 AG 12 Pterostylis acuminata, Australia AF153803 72 60 79	AG8ZGI-4	Hordeum vulgare, Scotland	AF354066	69	60	76	
AG 9TP Solanum tuberosum, USA AB000046 64 61 78 AG 10 Hordeum vulgare, Australia AF354071 62 57 73 AG 11 Glycine max, USA AF354114 69 63 76 AG 12 Pterostylis acuminata, Australia AF153803 72 60 79	AG 9	Solanum tuberosum, USA	AF354109	64	60	74	
AG 10 Hordeum vulgare, Australia AF354071 62 57 73 AG 11 Glycine max, USA AF354114 69 63 76 AG 12 Pterostylis acuminata, Australia AF153803 72 60 79	AG 9TX	Solanum tuberosum, USA	AB000037	64	60	78	
AG 11 Glycine max, USA AF354114 69 63 76 AG 12 Pterostylis acuminata, Australia AF153803 72 60 79	AG 9TP	Solanum tuberosum, USA	AB000046	64	61	78	
AG 12Pterostylis acuminata, AustraliaAF153803726079	AG 10	Hordeum vulgare, Australia	AF354071	62	57	73	
	AG 11	Glycine max, USA	AF354114	69	63	76	
AG BI Soil, Japan AB000044 61 60 69	AG 12	Pterostylis acuminata, Australia	AF153803	72	60	79	
	AG BI	Soil, Japan	AB000044	61	60	69	

Table 2. R.solani sequences recovered from the GenBank (National Center for
Biotechnology Information – NCBI) and sequence comparison with Iraqi
Pepper isolates IO-34. IO-39 & IO-40 using Clustal W.

The *R. solani* diversity between Iraqi Pepper isolates and global isolates maybe back to this might occur due to climatic changes and global increase of temperature.

The Neighbor-joining phylogeny test based on sequences differences in the ITS – rDNA region (Fig.1) illustrates estimates of phylogenetic relationships among all AGs of *R.solani*, including Iraqi isolates (IQ- 34, IQ- 39 & IQ- 40).

Kareem and Hassan

Fig 1. Neighbor - joining tree illustrating relationships estimates of phylogenetic relationships of test isolates (IQ - 34, IQ - 39 & IQ - 40) and all other AGs of R. solani. The number below each branch indicates the percentage of congruent clusters in 1000 bootstrap trials when values were greater than 50%.

Diyala Agricultural Sciences Journal, **5**(**2**) 45 – 54 ,2013

During the phylogenetic analysis in this study, the IQ- 39 isolate was found in a clustered with AG4- HGIII and IQ- 34, IQ- 40 isolates were clustered with AG5.

Sequencing and phylogenetic analysis of the ITS region has been confirmed to reliably divide isolates of *R. solani* into distinct groups and subgroups which correspond to the different anastomosis groups (carling *et al.* 2002).

REFERENCES

- Carling D.E. .1996. Grouping *Rhizoctonia solani* by hyphal anastomosis reaction. In. Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Eds. Sneh B, Jabaji-Hare S, Neate S, Dijst G. *Kluwer Academic Publishers, The Netherlands. pp. 37-47.*
- Carling, D. E., E. J. Pope, K. A. Brainard and D. A. Carter. 1999. Characterization of mycorrhizal isolates of *Rhizoctonia solani* from an orchid, including AG-12, a new anastomosis group. *Phytopathology* 89: 942–946.
- Carling, D. E., R. E. Baird, R. D. Gitaitis, K. A. Brainard and S. Kuninaga. 2002. Characterization of AG-13, a newly reported anastomosis group of *Rhizoctonia solani*. *Phytopathology* 92: 893–899.
- Chang, D.C.N. and L.C. Chou. 2007.Growth responses, enzyme activities and component changes as influenced by Rhizoctonia orchid mycorrhizal on Anoectochilus formosanus Hayata. *Botanical Studies* 48:445-451.
- Gonzáles García, V., M.A.Portal Onco and V. Rubio Susan. 2006.Review. Biology and systematics of the form genus Rhizoctonia. Spanish Journal of Agricultural Research 4:55-79.
- Gonzalez, D., D. E. Carling, S. Kuninaga, R. Vilgalys and M. A. Cubeta, 2001. Ribosomal DNA systematics of Ceratobasidium and Thanatephorus with Rhizoctonia anamorphs. *Mycologia 93: 1138–1150*.
- Herr L. J. 1979. Practical nuclear staining procedures for Rhizoctonia like fungi. *Phytopathology* 69:958 961.
- Hsiang T. and J.D.Dean.2001.DNA sequencing for anastomosis grouping of *Rhizoctonia solani* isolates from *Poa annua*. *International Turfgrass Society Research Journal V9:674-678*.
- Ogoshi, A. 1987. Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kühn. Annual *Review of Phytopathology 25: 125–143.*

Diyala Agricultural Sciences Journal, 5(2) 45 - 54, 2013

- Ogoshi, A., R. J. Cook and Bassett, E. N. 1990. Rhizoctonia species and anastomosis groups causing root rot of wheat and barley in the Pacific Northwest. *Phytopathology* 80: 784–788.
- Ogoshi A .1996. Introduction the genus *Rhizoctonia*. In. Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Eds. Sneh B, Jabaji-Hare S, Neate S and Dijst G. Kluwer Academic Publishers, The Netherlands. pp. 1-9.
- Parmeter, J.R.Jr., R.T. Sherwood and W.D Platt.1969. Anastomosis Grouping among isolates of *Thanatephorus cucumeris*. *Phytopathology* 59:1270-1278.
- Parmeter J.R. Jr., and H.S. Whitney. (1970). Taxonomy and nomenclature of the imperfect state. In: Biology and pathology of *Rhizoctonia* solani(Eds.: Parmeter Jr. JR). University of California Press, Berkeley, pp.7-19.
- Sneh, B., L. Burpee and A. Ogoshi. 1991. Identification of Rhizoctonia Species. American Phytopathological Society Press: St.Paul. MN, USA. D.R. Sumner and S.C. Phatak. 2003. First report of Rhizoctonia solani AG-2-4 on carrot In Georgia. *Plant Disease* 87:1264.
- Sneh B., E. Yamoah and A. Stewart.2004. Hypovirulent Rhizoctonia spp. Isolates from New Zealand soils protect Radish seedlings against Damping-off caused by *R. solani*. New Zealand Plant Protection 57:54-58.
- Watanabe B. and A. Matsuda. 1966. Studies on the grouping of *Rhizoctonia* solani Kühn pathogenic to upland crops. Appointed experiment (Plant Diseases and Insect Pests), Agriculture, Forestry and Fisheries Research Council and Ibaraki Agricultural Experiment Station No 7, pp. 131.

Diyala Agricultural Sciences Journal, 5(2) 45 – 54,2013

Kareem and Hassan

الخصائص الجزيئية لل R. solani المعزول من نباتات الفلفل في العراق باستخدام PCR.

محمد صادق حسن

* قسم وقاية النبات – كلية الزراعة – جامعة بغداد – جمهورية العراق

المستخلص

الفطر R. solani من الفطريات الممرضة المهمة على نباتات الخضر والذي ينتشر بشكل واسع في التربة حول العالم . تم اختيار ثلاث عزلات ممرضة من الفطر من اصل ثمانية عزلات جمعت من نباتات الفلفل من مناطق مختلفة في بغداد – العراق . وبعد اختبار امراضيتها على بذور الفجل لعزلات اظهر تسلسل القواعد النايتروجينية لمنطقة IDNA- ITS الفلفل العراقية واشار اختبار شجرة الاصل التطوري اعتمادا على منطقة rDNA- ITS الفلفل العراقية واشار اختبار شجرة الاصل التطوري اعتمادا على منطقة IQ- 40 الى ان العزلات واشار اختبار شجرة الاصل التطوري اعتمادا على منطقة IQ- 40 الي ان العزلات واشار اختبار شجرة الاصل التطوري اعتمادا على منطقة IQ- 40 الى ان العزلات واشار اختبار شجرة الاصل التطوري اعتمادا على منطقة AG5 والعزلة 39 -10 الى ان العزلات والمار اختبار المعزولة من الفلفل تنتمي الى AG5 والعزلة 39 -10 الى ان العزلات والتسجيل . والذي ارسل ارقام تسجيل تسلسلات العزلات في تموز ٢٠١٣ ، KF372662 الدولي التدقيق والتسجيل . والذي ارسل ارقام تسجيل تسلسلات العزلات في تموز ٢٠١٣ ، KF372662

الكلمات المفتاحية: R. solani ، الفافل ، الامر اضية ، الخصائص الجزيئية، تسلسل الدنا ، الأصل التطوري .

54